
Graph 

Processing

Graph theory has been around since the 18th

century. However, in recent times, the range of

problems that require graph processing has grown

rapidly. With the ever evolving needs of users and

the rise of big data, understanding the relationships

between interconnected data has grown in

importance.

Graphs are ideal for a wide variety of applications,

including natural language processing, geospatial

analysis, medical records, social networks,

ecommerce, and cybersecurity.

Graph Similarity Computations 

on Large Graph Databases
Puya Memarzia, Virendra Bhavsar, and Suprio Ray

Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada

Data Characteristics

Motivation
 Processing large numbers of complex graphs is a

challenging task, and an ongoing problem.

 Data size and complexity continuously evolves over

time. Graph databases are well-suited for this.

 Prior work designed for small-scale graph processing,

and is not intuitive to use for large volumes of data.

 Performance and usability are major challenges.

 We need a comprehensive solution that can handle

large-scale data, as well as data from different

sources.

Graph Processing Components

 Large: Upwards of millions of discrete graphs

 Complex: Nodes are labeled and have additional properties. Edges are directed,

and have weights and labels.

 Dynamic: Need to be able to add, remove, or modify nodes and relationships, at

any time. Some graph types have additional rules that must be satisfied.

 Index-free adjacency: find adjacent nodes without the need for indexes or

database scans. Performance doesn’t degrade like relational databases.

 Labels are more important than properties, and are given preferential treatment in

the database. Properties are stored separately, but cached.

Future Work
 Implement data loaders to import non-graph data.

 Improve performance by utilizing high performance computing (GPUs, clusters, 

cloud computing, etc.).

 Explore new techniques and data structures to reduce graph memory usage in 

parallel applications.

 Explore indexing techniques for graph databases.

 Graph database: Neo4j
 Meets our requirements to store and process the datasets.

 Is an open source project, written in Java.

Introduction

Graph 

Processing

GraphML
Graph

Database

 Randomly generated graphs

 Electronic Medical Records (EMR)

 E-business

 E-learning data

Need uniform schema for each dataset, 

and data loaders for real world data.

 Random graph generator
 We are developing a flexible tool that will allows us to generate 

graphs or trees, with the characteristics that we need.

 Supports weighted and labeled property graphs.

 Outputs results in the GraphML format.

CPU

GPU

Cluster

Graphs in 

various 

formats

Graphs in 

various 

formats

Graph 

ProcessingGraph 

Processing

Applications

…

 Nodes

 Relationships

 Paths

 Neighborhoods

 Distances

A combination of metrics

Datasets Queries

Graph Similarity
Graph similarity is a way of measuring how similar two graphs are. This is done

using intricate algorithms that analyze the graph’s structure in addition to its

properties. These algorithms generally return a number as a measure of the

similarity between a pair of graphs. This similarity metric can then be used to group

similar entities, such as webpages, products, malware, or medical patients.

 Parallel computing framework: Nvidia CUDA, JCuda
 GPGPU framework will be used to accelerate complex operations.

Figure 1. Graphs and Big data

Proposed Framework

 Data Loader
 Implement tool to filter and convert graph data to a format import 

tools can understand.

Figure 5. Proposed framework

Figure 2. Current solution

Powerful graph processing framework based around a graph database.

Handle importing/exporting data in various formats, and visualizing the graphs.

Some similarity algorithms will be implemented based on related work in [1][2][3].

Cypher query language can satisfy some tasks, and computationally intensive

workloads can be offloaded to GPU.

Discrete XML 

files
Discrete XML 

files

Graphs in 

various 

formats

Discrete XML 

files

 Graph Visualization Tools: Gephi, yEd

Figure 3. Neo4j microbenchmarks (a) 

importing data (b) basic pattern matching

Graph 

Visualization

Node ID 

Label

Properties

Edge ID 

Label

Weight

Figure 4. Graph components

Graph 

Processing

Framework

Data Loader

File

System

References: [1] Bhavsar, Virenda, Harold Boley, and Lu Yang. "A weighted-tree similarity algorithm for multi-agent systems in e-business environments." (2004). [2] Kiani, Mahsa, Virendrakumar C. Bhavsar, and Harold Boley. "Combined Structure-Weight Graph Similarity and 

its Application in E-Health." CSWS. 2013. [3] Kiani, Mahsa, Virendrakumar C. Bhavsar, and Harold Boley. "Similarity of Attributed Generalized Tree Structures: A Comparative Study." Similarity Search and Applications. Springer International Publishing, 2015. 150-161.

1k 10k 100k 1M

1

10

100

1000

10000

100000

Number of graphs

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

q1 q2 q3

1k 10k 100k 1M

1

10

100

1000

10000

Number of graphs

D
at

a 
Im

p
o

rt
 T

im
e 

(s
)

(a)

(b)


